Basics of radiography & Introducton and basic interpretation of chest X ray

BASICS AND TECHNIQUES OF RADIOGRAPHY

- History
- Screen film radiography
- Fluroscopy
- CR computerised radiography
- DR- digital radiography

INTERPRETATION OF CHEST X RAY

- Various views
- Technical adequacy of the film
- Appearance of various tissues on x ray
- Normal anatomy
- Few important basic interpretations on chest x ray

BASICS OF RADIOGRAPHY TECHNIQUES

• X-rays were discovered in 1895 by Wilhelm **Conrad Roentgen** (1845-1923) who was a Professor at Wuerzburg University in Germany.

Techniques of radiography

According to the image receptor

- Conventional film screen radiography
- Computed radiography (CR)
- Digital radiography (DR)
- Fluoroscopy

FILM SCREEN CASSETTE

DR FLAT PANEL DETECTOR

CR CASSETTE

FILM SCREEN RADIOGRAPHY

Dark room processing in conventional radiography

CR CASSETTE

PHOTOSTIMULABLE PHOSPHOR PLATE PLACED INSIDE A CASSETTE which is reusable (USES BARIUM FLUOROHALIDE)

CR CASSETTE READER

X ray film

DR flat panel detector – TFT technology

Schematic cross section of scintilator and TFT-panel.

SCREEN FILM CASSETTE (conventional radiography)

COMPUTERISED RADIOGRAPHY (CR)

Phosphor Plate

DIGITAL RADIOGRAPHY DR

FLUOROSCOPY

Continuous X-ray image on a monitor, much like an X-ray movie.

APPLICATIONS OF FLUOROSCOPY

Barium X-rays and enemas (to view the gastrointestinal tract)
Catheter insertion and manipulation (to direct the movement of a catheter through blood vessels, bile ducts or the urinary system)
Angiography (DSA)
Orthopedic surgery (to guide joint replacements and treatment of fractures)

PRINCIPLES OF X RAY IMAGE AND DIFFERENT DENSITIES

CHEST X RAY VIEWS

CHEST X RAY PA VIEW

WHY PA VIEW AND NOT AP VIEW FOR CHEST X RAY

HEART BEING AN
ANTERIOR STRUCTURE
IS LESS MAGNIFIED IN
PA VIEW

MORE OF LUNG IS VISIBLE

CHEST X RAY LATERAL VIEW

CHEST X RAY AP VIEW

CHEST X RAY AP VIEW

- Supine position
- Usually in ill patients/ infants where erect position is not possible
- Tube cassette distance is shorter
- Heart is magnified cannot reliably comment on cardiomegaly

PA vs AP view

LATERAL DECUBITUS VIEW

USEFUL IN DETECTING MINIMAL PLEURAL EFFUSION NOWADAYS REPLACED BY ULTRASOUND

APICAL / LORDOTIC VIEW

APICAL / LORDOTIC VIEW

BETTER DEPICTS OPACITIES IN LUNG APEX AND MIDDLE LOBE PATHOLOGIES

TECHNICAL ADEQUACY

INSPIRATORY FILM

Anterior 5 – 6 th ribs / posterior 8 – 10 th ribs should be visible

INSPIRATORY VS EXPIRATORY FILM

PENETRATION

- Thoracic spine disc spaces should be barely visible through the heart. - Penetration is sufficient that bronchovascular structures can usually be seen through the heart.

ROTATION

ROTATED FILM WITH APPARENT MEDIASTINAL SHIFT

CHEST X RAY ANATOMY

Pattern approach in reading a chest x ray

- Systematic approach
- Consistency of the reading pattern
- Either from centre to outside or the otherway
- Look outside the chest

Trachea and bronchi

Hilum

•Hila formed by pulmonary arteries,veins,bronchi

 Prominent hila
dilated PA
Enlarged LNs
Mass lesion from the main bronchus

Diagnosis ???

Bilateral hilar lymph nodes enlargement

> Diagnosis SARCOIDOSIS

Spiculated Hilar mass – Calung

Position of the hilum

Elevated right hilum

Cardiac borders on CXR

Cardiac contour anatomy

HEART SIZE ON CHEST X RAY

Cardio thoracic ratio , NORMAL - < 50%

Cardiomegaly due to chamber enlargement

Cardiomegaly in pericardial effusion

Normal thymus in CXR of infants

LUNG ZONES

Costophrenic and cardiophrenic angles

PLEURAL EFFUSION – BLUNTING OF CP ANGLES

MINIMUM QUANTITITY OF PLEURAL FLUID REQUIRED TO BECOME EVIDENT ON ERECT CHEST X RAY - 200 – 250 CC

Free fluid vs loculated pleural collection – MENISCUS SIGN

DIAPHRAGM

RIGHT HEMIDIAPHRAGM IS HIGHER

DIAPHRAGMATIC PALSY

THORACIC CAGE AND BONES

SOFT TISSUES

Identify the abnormality !!

Few basic abnormalities on chest X ray

CAUSES FOR OPAQUE HEMITHORAX

Total lung collapse with ipsilateral mediastinal shift

Massive pleural effusion with contralateral mediastinal shift

Consolidation with air bronchogram sign

Pneumothorax

Bulla

Pulmonary cavity

Lung mass

Mutilple lung nodules – diagnosis??

