Drug dosage, Fixed dose combination & factors modifying drug action

Drug dosage

Dose

"Is the appropriate amount of a drug needed to produce a Certain degree of response in an individual"

- It varies with the chosen clinical response and type of therapy
- Prophylactic, therapeutic or toxic
- Standard dose
- Regulated dose
- Target level dose
- Titrated dose

Fixed dose ratio combination

ADVANTAGES

- Convenience and better compliance
- Synergistic
- Counters side effects
- Overcomes drug resistance
- Addition of therapeutic effect

Convenience and compliance - Rational Convenience - Irrational

Disadvantages

- All the drugs are needed?
- Dose adjustment of one component is not possible
- Difference in the time course of action
- Adverse effect difficult to spot the drug
- ► Contraindication to one component ----> whole preparation
- Altered renal or hepatic function may affect PK,s of a drug

Factors modifying drug action

Variation in response to the same dose of a drug between different patients and even in the same patient on different occasions is a rule rather then exception.

- **Differ in pharmacokinetic handling of drugs.**
- Variations in number or state of receptors, coupling proteins.
- Variations in neurogenic/ hormonal tone.

Their understanding can guide choice of appropriate drug and dose for an individual patient.

Factors modify drug action either

- Quantitatively: plasma concentration/ action of the drug is increased or decreased-dealt with by adjustment of dosage
- Qualitatively: type of response is altered eg;allergy.

FACTORS MODIFYING DRUG ACTION

1. BODY SIZE (drug conc at the site of action)

Dose = Weight in Kg X Adult dose

70

Dose = BSA (m²) X Adult dose

1.7

BSA (m²) = Wt (kg)^{0.425} X Height (cm)^{0.725} X 0.007184

Activity

Calculate the dose of drug X to be administered for a child weighing 31.5 kgs and suffering from fever of unknown origin (adult dose of X= 500Mgs/dose)

Ans: 225mgs/dose

2. Age: for children Young's Formula dose = Age X Adult dose Age + 12 **Dilling's Formula** Age X Adult dose Dose = 20

Do infants have physiological differences...?

- GFR and tubular transport
- Hepatic drug metabolizing system
- Drug absorption
- Special adverse effects of drugs eg. Corticosteroids, androgens etc.

ELDERLY

- Renal function decreases and hence GFR
- ► ↓ hepatic drug metabolizing activity
- $\blacktriangleright \downarrow$ liver blood flow

TOXICITY

Low plasma albumin, reduced blood flow and motility of intestines, multiple drug therapy.

3.SEX

- Body size
- Gender specific- adverse effects of drugs antihypertensives – impotence & loss of libido ketoconazole - gynaecomastia
- Androgens are unacceptable to women and oestrogens to men
- In women considerations should be given to pregnancy and lactation.

Drugs in pregnancy

- ► \downarrow GI motility \downarrow A
- \uparrow Plasma & ECF \uparrow D
- ► Hepatic microsomal enzymes induction ↑ M
- \uparrow Renal blood flow \uparrow E
- Plasma proteins

 \downarrow Albumin- \uparrow unbound fraction of acidic drugs $\alpha 1$ acid glycoprotein – vice versa

4.Species & Race

- Rabbits are resistant to atropine.
- Rats are more sensitive to curare than cat

Racial differences eg: blacks require higher and mongols require lower concentrations of atropine and ephedrine to dilate their pupil

 $\triangleright \beta$ blockers – less effective in blacks

5.Genetics

- Key determinants of drug response like transporters, ion channels, receptors, drug metabolising enzymes are genetically controlled.
- Pharmacogenetics- study of genetic basis for drug response variability
- Pharmacogenomics use of genetic information to guide selection of drugs and dose in an individual(tailor made or personalized therapy)

Gene libraryıi

Genetic variations...

- ► G6PD deficiency- haemolysis by primaquine
- Atypical pseudocholinesterase prolonged succinylcholine apnoea.
- CYP2C9 variant- increased action of warfarin
- Isoniazid acetylation by NAT2
- Overexpression of P-gp results in tumour resistance to anticancer drugs

6. Route of administration

Governs speed & intensity of drug response

Therapeutic response may depend on it

Ex.Mgso4

7.Environmental factors and time of administration

- > Hypnotics taken at night work easily
- Insecticides, tobacco smoke and charcoal broiled meat are known to induce drug metabolism.
- Food interferes with absorption

Charcoal broiled meat

8. Psychological factors

Patient's attitude and beliefs

ex. Nervous and anxious patients require more Gen.Anaesthetics

- Placebo: inert substance 'I shall please'
- Control device in clinical trial of drugs.
- > To treat a patient who in the opinion of the physician does not require an active drug.
- > Nocebo

Activity 1

Rate of elimination of a new drug is 20mg/hr at a steady state plasma concentration of 10mg/L, then its renal clearance will be.....

A)0.5 L/hr B)2.0 L/hr C)5.0 L/hr D)20 L/hr

Clearence= elimination rate /pl.conc

Ans: B

9. Pathological states

 G.I.Diseases: alter absorption achlorhydria-decrease aspirin absorption NSAID's - aggrevate peptic ulcer

- Liver disease: bioavailability of drugs having high first pass metabolism is increased.
- Serum albumin is decreased. eg;warfarin
- Metabolism and elimination of some drugs is decreased and their dose should be reduced, eg; morphine.
- Prodrugs. Eg; bacampicillin

- decreasing drug absorption from g.i.t due to mucosal oedema and splanchnic vasoconstriction.
- Modify Vd.
- Retarding drug elimination as a result of decreased perfusion and congestion of liver, decreased GFR and increased tubular reabsorption.

KIDNEY DISEASE

- Clearance of drugs that are primarily excreted unchanged is reduced parallel to decrease in creatinine clearance. Eg; aminoglycosides.
- BBB permeability increased
- Thyroid disease: clearance of digoxin is roughly proportional to thyroid function.
- others: antipyretics in fever diuretics in edema

10.Drug interactions

- Drugs may modify the response to each other by pharmacokinetic or pharmacodynamic interaction between them.
- Eg; allopurinol and ampicillin high incidence of skin rashes

11.Cumulation

- Any drug will cumulate in the body if rate of administration is more than rate of elimination.
- Eg; prolonged use of chloroquine causes retinal damage.

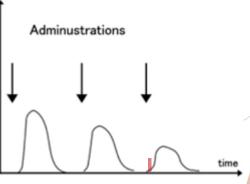
12.Tolerance

- Requirement of higher dose of a drug to produce a given response.
- Natural: eg;-species-rabbits are tolerant to atropine
 - <u>Race</u>-blacks are tolerant to mydriatics

ACQUIRED

- By repeated use of a drug in an individual who was initially responsive. eg;-CNS depressants.
- Tolerance need not develop equally to all actions of a drug.eg;- tolerance occurs to analgesic and euphoric actions of morphine but not to its constipating and miotic actions.

Cross tolerance


- Development of tolerance to pharmacologically related drugs.eg;- alcoholics are relatively tolerant to GAs.
- Mechanisms may be
- Pharmacokinetic-effective concentration at the active site is decreased- by enhancement of drug elimination on chronic use eg;- barbiturates

Pharmacodynamic/cellular tolerance: cells of the target organ become less responsive –may be due to down regulation of receptors.

Tachyphylaxis

- Rapid development of tolerance-doses of a drug repeated in quick succession result in marked reduction in drug response- usually seen with indirectly acting drugs.
- Eg; ephedrine-act by releasing catecholamine's in the body, synthesis of which is unable to match release-stores get depleted.

Drug resistance

- Refers to tolerance of microorganisms to inhibitory action of antimicrobials.
- **Eg;** staphylococci to penicillin.

Question. 1

percentage of a drug remaining in the body after 5 half lives which follows 1st order kinetics is.....

- A) 6.25% B) 96.875% C) 93.750% D) 94.750%
- E) None of the above

3.125% !! E) None of the above

Question 2

True about first order kinetics is

- A) clearence remains constant
- B) fixed amount of drug is eliminated
- C) half life increases with dose
- D) decreased clearence with increasing dose

Ans: A